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I. Introduction 

HORTLY after JPL’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) 

mission launches, separates, and commences its cruise phase, two CubeSats will deploy from the launch 

vehicle’s upper stage and begin independent flight to Mars (Fig. 1). During InSight’s entry, descent, and landing 

(EDL) sequence, these twin Mars Cube One (MarCO) spacecraft will fly 3,500 km above the Martian surface, 

recording and relaying InSight UHF radio data to the Deep Space Network (DSN) on Earth1. 

 MarCO is a twin CubeSat mission developed by the NASA Jet Propulsion Laboratory (JPL) to accompany the 

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mars mission lander. 

MarCO's primary mission objective is to launch with InSight and independently fly to Mars to serve as a 

communications relay during InSight's entry, descent, and landing (EDL) phase. MarCO represents a new type of 

deep space mission: CubeSats at Mars. Building on the development of JPL's first interplanetary CubeSat project, 

the Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment (INSPIRE), MarCO further refined the 

approach to hardware, software, and ground architecture development to solve the challenges of quickly building 

low-budget spacecraft to fly to Mars. The greatest constraint, beyond others typical of CubeSat missions, was time. 

The duration between MarCO's conception to completion of spacecraft assembly was less than two years - an 

unprecedented schedule for any planetary mission to date. Through necessity, MarCO has built on previous 

experience, procedures, systems, and development methodologies, defining a new niche for supporting larger 

primary missions. The MarCO spacecraft are poised to write a new chapter in deep space exploration. 

Originally slated to launch and reach Mars in 2016, the InSight mission schedule subsequently slipped to 2018. 

During the original landing of InSight, Earth would not be in view, and no orbiter around Mars would have been in 

position to both receive UHF EDL data and simultaneously relay it back to Earth. It was from this obstacle that 

MarCO was conceived. Regardless of any changes to InSight’s 2018 EDL configuration geometry, MarCO is still 

expected to fly and serve in the same capacity as originally designed: the first CubeSat mission to Mars. 

CubeSats have historically been firmly in the domain of universities and small companies. As first conceived, 

they served as a platform upon which to teach all aspects of the space mission lifecycle. JPL took on this mission 

type with Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment2 (INSPIRE), moving the concept into 

a new domain: deep space. Building from the INSPIRE platform and lessons learned, MarCO addressed new 

challenges in the domain of planetary missions: independent interplanetary flight and navigation, integration with a 

large-scale mission, long-distance and long-delay communication, short development time, and a small development 

team. Of these, the greatest constraint was schedule: only 18 months passed from conception of mission concept 

until delivery of fully assembled and tested flight hardware. Careful selection of mission team, along with extensive 

use of off-the-shelf equipment, and streamlining automated processes, was essential. This achievement represents 

the next step in the evolution of CubeSats beyond low-Earth orbit. 
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II. Mission Status 

Development and assembly is complete. Hardware for both spacecraft has been received, tested, and integrated 

into the spacecraft stack. In late 2015, InSight’s launch was postponed. Despite this schedule disruption, MarCO 

remains ready for the opportunity to launch to Mars along with InSight. After this launch, MarCO will conduct 

operations as originally designed. 

III. Spacecraft Hardware 

Each MarCO spacecraft is 6U in size (1U = 10x10x10 cm). They have several deployable elements: solar arrays, 

high-gain X-band reflectarray antenna as shown in Fig. 2, and a UHF antenna, seen in Fig. 3. Additionally, each 

spacecraft has a command and data handling system (C&DH), electrical power system (EPS), two cameras, an 

attitude determination and control system (ADCS), and at the heart of the mission, the V2 Iris radio. 

A. C&DH Subsystem (Fig. 2) 

Provided by AstroDev LLC, the MarCO C&DH is an incremental development based on a previous design used 

by the INSPIRE project1. It consists of an MSP430F2618 flight microcontroller (FCPU), an MSP430FR5739 

functioning as a real-time clock (RTC), 48 megabytes of nonvolatile phase-change memory, and a cascaded 

watchdog system. The FCPU handles interfaces (SPI, I2C, UART/RS-422, and standard GPIO) to all spacecraft 

subsystems, effectively routing relevant data to and from appropriate devices. 

 
Figure 1. Basic MarCO concept of operations. Trajectories for both MarCO spacecraft (A and B) are shown 

in white; the InSight trajectory in shown in red. 4 total trajectory correction maneuvers (TCMs) will occur for 

each MarCO spacecraft during the 6.5-month cruise phase prior to InSight’s EDL. 
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Designed by the MarCO team, the RTC is in reality a general-purpose microcontroller integrated into the C&DH 

subsystem. The RTC executes custom software to provide “RTC-plus-plus” functionality accessible on the I2C 

spacecraft bus. In addition to being a clock, MarCO’s RTC also acts as a I2C-UART bus communications bridge for 

transferring data to and from each camera system, and provides general nonvolatile storage in its ferromagnetic 

RAM (FRAM). Because FRAM read/write performance and endurance rivals that of SRAM3, the RTC 

microcontroller is able to save frequently updated variables (such as the current time and telemetry sequence 

counters) even between full power cycles of the entire spacecraft bus. 

 

 

 
 

B. Electrical Power System (EPS) and Solar Arrays (Fig. 2) 

Supplied by AstroDev LLC, the EPS subsystem allows four channels of solar panel input, and regulates 12V 

battery, 5V and 3.3V buses. MarCO’s battery pack consists of 18650S lithium ion cells in 3S4P configuration. 

MarCO’s solar arrays were acquired from MMA Design LLC. Through a 4-motion deployment process, the dual 

arrays unfold from narrow 3U panels (launch position) and rotate into the fixed flight configuration shown in Figs. 2 

and 3. 

C. Attitude Control System (ACS) and Propulsion (Fig. 2) 

MarCO’s XACT attitude control system (Fig. 2) is provided by Blue Canyon Technologies (BCT). It includes a 

star tracker, gyro, sun sensors, and reaction wheels. It has modifications to software and hardware to accommodate 

deep-space operations. Cold-gas propulsion functionality comes via an 8-valve and tank system from Vacco 

Industries (Fig. 2), and is directly controlled by the XACT unit. Both systems are also controllable by the C&DH 

subsystem, although during normal operations, minimum interaction beyond power control should be necessary. 

  
 

Figure 2. Front of MarCO spacecraft. Cutaway reveals cold gas thruster propellant tank, Iris X-Band 

transponder / amplifiers, C&DH / EPS, and ADCS system. 
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D. Spacecraft Structure, Harnessing, and Thermal (Fig. 3) 

All structure, cabling, and interface boards were developed at JPL, and maintain compliance with the 6U 

CubeSat standard4. Thermal mitigation is achieved with two radiators, blankets, and heaters, in conjunction with 

numerous temperature sensors throughout each spacecraft bus. 

 

 

E. Cameras 

Each of the two fixed-zoom 752 x 480 pixel resolution camera is connected to an independent GumStix single-

board computer for image capture and processing. One camera uses a narrow field-of-view lens (NFOV), while the 

other uses a wide field-of-view (WFOV) lens. The entire assembly remains unpowered until the C&DH enables 

each system. The NFOV camera points down along the UHF antenna boresight, facing Mars during the EDL flyby. 

The WFOV camera faces the HGA, allowing for both verification of reflectarray & feed deployment, as well as 

imaging of the Earth. After capture, each image is processed into several thumbnails and compressed to various 

levels prior to downlink. As previously noted, the RTC microcontroller bridges the camera communications with the 

FCPU. When ready for downlink, the images are packetized by the C&DH, and forwarded to the radio. 

F. Radio and Antennas 

Like the C&DH subsystem, the Deep Space Network (DSN)-compatible software-defined Iris radio brings 

heritage from the INSPIRE project. Supporting 4W X-band transmission output, MarCO’s V2 Iris radio was 

customized to include a UHF receiver, on-board Consultative Committee for Space Data Systems (CCSDS) protocol 

processing, radiation tolerance, external solid state power amplifier (SSPA), and external low-noise amplifier 

(LNA). 

Each spacecraft has four antennas:  

1) Wide beam width, low-gain patch antenna (LGA) for near-Earth communications (Fig. 2); 

2) Medium gain patch array (MGA) for safe-mode communications far from Earth (Fig. 2); 

3) High gain reflectarray antenna (HGA) for 8kbps data at 1.05AU (Fig. 2); and 

4) UHF loop antenna to receive data from the InSight lander during EDL (Fig. 3).  

 
Figure 3. Rear of MarCO spacecraft, via mechanical fit check assembly. All external flight-like hardware 

assembled to evaluate pre-deployment stowage. 
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IV. Mission Software 

MarCO utilizes custom flight software developed by a two-person software team. While most of the code runs in 

the FCPU, there are additional pieces in the RTC microcontroller, the watchdog microcontroller, the camera 

systems, and the V2 Iris radio’s CCSDS protocol library. 

On the ground, the MarCO project extensively developed to, tested with, and plans to fly using JPL’S AMPCS 

telemetry and command processing software tool. 

G. Flight Software 

1. Core Flight Software 

MarCO’s core flight software, named "protos"5, has pieces of heritage from a number of small JPL projects and 

missions, generally resource-constrained. The current instantiation of protos (Fig. 4) was originally developed by the 

same software team for INSPIRE, and adapted to MarCO. While the INSPIRE and MarCO C&DH FCPU (a 24-bit 

Von Neumann architecture MSP430F2618 from Texas Instruments) has extensive flight heritage in CubeSat 

missions, it is extremely resource-limited: 8 kilobytes of SRAM, 116 kilobytes of flash program memory, running at 

12 MHz. Careful resource conservation was, and remains, essential. To support both the processing and schedule 

constraints of the mission, flight software development occurred in a very tight loop, almost entirely on engineering 

hardware. Due to the relatively low costs associated with CubeSat systems, a C&DH system was always available 

for development, allowing high fidelity testing. While adhering to a prudent level of code review and schedule 

oversight, the software team was given wide latitude to make and change design decisions as necessary to ensure 

mission success. The flight code is optimized for size, leveraging automation in the code-generation and build 

processes as needed. The final flight software consists of approximately 20,000 lines of handwritten C plus another 

5,000 lines of auto-generated C parameter tables. Compiled, this takes roughly 85% of FCPU internal flash memory. 

Because this utilization is above 50%, entirely new software releases cannot be uploaded in flight. However, the 

capability exists - and has been successfully tested - to patch and extend executing code in real-time through a series 

of uplink commands. 

 
 

 
Despite running on a radiation “soft” processor, the flight code is written with reliability in mind. Critical 

variables and tables are stored with triple modular redundancy (TMR), pointers are repeatedly verified, and code 

execution order is enforced. Failures due to SRAM corruption result in a software reset, which takes less than one 

second to complete. The code is robust to resets, capable of restoring critical state values as necessary. Table-driven 

tasks, such as command and telemetry dictionary distillation, generate both flight and ground software at build time, 

essentially eliminating the possibility of introducing errors in translating from dictionaries to raw code. 

The core task that the MarCO flight software accomplishes is sequence execution. Any spacecraft task can be 

accomplished through the use of a sequence. Sequences are written in a low-level programming language created by 

 
Figure 4. MarCO Software Stack 
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the software team for the MarCO mission. The MarCO sequencing language supports standard programming 

constructs such as variables, conditional branching, and looping. Additionally, it supports the execution of 

telecommands. Sequences are written in a human-readable format similar to assembly and compiled before being 

written into the spacecraft FCPU flash memory. Sequences can be created, patched, and deleted in a manner similar 

to flight software patching. To execute, a sequence is loaded into a sequence engine, which executes the compiled 

instructions. MarCO supports the execution of up to eight simultaneous sequences, although only three are needed 

for day-to-day operations. 

 

2. Other Flight Software 

The RTC processor is an MSP430FR5739 microcontroller running at 24MHz, with an additional timekeeping 

crystal oscillator. The RTC-FCPU bus interface is I2C, and the RTC acts as an I2C slave peripheral. Like the FCPU, 

it executes an adaptation of the protos software, with a focus on four primary tasks: timekeeping, GPIO 

manipulation, camera communications, and FCPU data storage/retrieval (Fig. 5). In the timekeeping capacity, the 

RTC produces a pulse-per-second signal that can be read throughout the spacecraft bus. It constantly saves current 

time (using TMR) to a protected area of FRAM at 4Hz, allowing reliable recovery even in the event of a full 

spacecraft reset. To support camera communications, the RTC controller functions as a buffered I2C-UART bus 

bridge between the FCPU and the camera systems. Finally, it acts as generic non-volatile memory device, allowing 

the FCPU to read and write spacecraft state data that may be lost otherwise during a system reset. 

 
MarCO’s camera systems, two per spacecraft, run a customized embedded Linux distribution on a GumStix 

single-board computer (Fig. 5). A Python-based control shell spawns at boot on each system, and effectively serves 

as the interface between camera and spacecraft. The script receives commands from and sends data to the FCPU via 

the RTC microcontroller, which acts as an I2C-UART bridge. A simple communications packet protocol defines the 

way the camera and FCPU interact, and includes basic data integrity checking through the use of CRC16-CCITT. 

The camera systems are powered on for short periods of time directly by FCPU GPIO lines to perform brief imaging 

campaigns, process the images, and store them on standard SD cards. Images can be retrieved any time the systems 
are powered. 

Processing downlink telemetry packets into CCSDS Advanced Orbiting Systems (AOS)6 version 2 space data 

link protocol telemetry frames is accomplished in the V2 Iris radio with a software library written by the MarCO 

team. The library, written in portable generic C, supports frame encapsulation of CCSDS Space Packets and allows 

multiple methods of multiplexing AOS frame virtual channels into a telemetry stream. It also includes a Python 

abstraction layer and has been tested and used on a wide range of platforms, from desktop PCs (Windows, OSX and 

Linux) to other embedded architectures. The MarCO project also used it in an Arduino configured as a V2 Iris radio 

emulator, allowing flight system testing independent of the actual radio subsystem. 

H. Ground Software 

During the development of Mars Science Laboratory (MSL) at JPL, a tool was created to simplify the real-time 

processing, storage, and retrieval of mission test data7. Written in Java, the AMMOS Multimission Data Processing 

 
Figure 5. MSP430FR5739 Microcontroller  
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and Control System (AMPCS) software package takes advantage of modern software interfaces to give developers, 

spacecraft testers, and mission operators a flexible system through which to monitor and control spacecraft systems.  

Fully capable of interfacing with a full range of data streams, from simple serial up to the DSN, AMPCS is a ‘Swiss 

army knife’ in the toolbox of low-cost mission development at JPL. 

A key factor in the decision to use AMPCS for INSPIRE and MarCO was the ability to start utilizing it early – 

from initial spacecraft development to full flight operations. Figure 6 shows the high-level dataflow through 

AMPCS. Any number of testing and flight configurations can be setup simply by providing spacecraft connectivity 

to the “Telemetry I/O” interface. This true-to-form “test as you fly” capability made AMPCS an ideal choice for 

both missions. 

 
AMPCS provides multiple ways to receive, process, and store CCSDS telemetry data throughout a mission 

lifecycle. The telemetry can be viewed through a standard or mission-customized set of fixed GUI views, and also 

retrieved through a set of command-line tools for analysis in any other desired fashion. Uplink commanding is 

similarly supported in a separate module, giving users the ability to build CCSDS telecommands directly from a 

mission-defined command dictionary and transmit to the spacecraft through a variety of connectivity options. 

Deployment of AMPCS for MarCO was simple: virtual machines containing pre-configured instances of 

AMPCS were instantiated at the necessary locations. Automated build scripts then performed the final software 

changes as needed based on testing circumstances. Test personnel consolidated testing session data into a primary 

database for archival and later retrieval. 

Additionally, AMPCS incorporates a Python framework for generalized automation. Python scripts can be used 

to perform functions such as monitoring telemetry for a specific condition, and automatically sending commands 

when the condition is met. This is particularly useful in testing situations where a common set of commands are 

used for regression testing of a flight software release. 

V. Conclusions 

MarCO represents an evolution in the role of CubeSats from low-Earth-orbit teaching and technology 

demonstration platforms to legitimate deep space and planetary missions. As such, MarCO addressed new 

challenges, including independent interplanetary flight and navigation, integration with a much larger primary 

mission, long-distance and long-delay communications, short development time, and a small development team. As 

planetary missions follow the same trend in technological advancement of improved capability for lower mass and 

 
Figure 6. AMPCS dataflow block diagram7. 
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volume, interplanetary CubeSats will become increasingly important. MarCO is the trailblazer of this new class of 

planetary missions. 
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